ap
An International Peer Reviewed Research Journal
AJP
SSN : 0971 - 3093
Vol 26, No 8-10, August-October, 2017
Asian Journal of
Physics
Vol. 26
No 8-10, 2017, 285-290
Time-Space Quantum Entanglement
Francis T S Yu
Emeritus Evan Pugh (University Professor of Electrical
Engineering)
Penn State University, University Park, PA 16802,
USA
___________________________________________________________________________________________________________________________________
In writing this article, we started with fundamental differences between Science and Mathematics. One is physical reality and other is abstract reality. By using exact mathematics to analyze approximated science, it is not a guarantee to obtain reliable and accurate solutions. Since we live in a Temporal Subspace, every substance within universe obeys the laws of science and the rule of time. We will show instant Quantum Entanglement at a large distance only existed in a Timeless Space. But Timeless Space is not a Temporal Space and it cannot be existed within a temporal space. Particle Entanglement has to be at least two to tangle (it takes two to tangle). Since every entanglement involves time and space, Temporal and Spatial Entanglement can be defined. We have also shown that, Quantum entanglement is operating within the Certainty Limit of Heisenberg. In view of the Einstein’s Relativity, Quantum Entanglement can be extended to the Relativistic Regime; namely Relativistic Quantum Entanglement. © Anita Publications. All rights reserved.
Keywords: Temporal Subspace, Quantum Entanglement, Timeless Space
Total Refs: 11
1. Yu FT S, Time: The Enigma
of Space”, Asian J Phys, 26(2017), No.3, 00-00,
2017.
2. W. Heisenberg W, “Über den
anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik,” Zeitschrift für Physik, 43(1927)172.
3. W. Pauli, “Über den Zusammenhang
des Abschlusses der Elektronengruppen im Atom mit der
Komplexstruktur der Spektren”, Zeitschrift für Physik
31, 765(1925).
4. F. T. S. Yu, “Science and
the Myth of Information,” Asian Journal of Physics, Vol. 24, No.
12, 1823-1836, (2015).
5. L. J. Cultrona, E. N. Leith, L.
J. Porcello and W. E. Vivian, “On the application of Coherent
Optical Processing Techniques to Synthetic-Aperture Radar,” Proc.
IEEE, 54, 1026 (1966).
6. D. Gabor, “A New Microscope
Principle,” Nature 161, 777 (1948).
7. J. A. Wheeler,
W. H. Zurek, Quantum Theory and Measurement. Princeton
University Press. Princeton, 2014.
8. A. Einstein, B. Podolsky,
N. Rosen N; Podolsky,”Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?”. Phys. Rev. 47 (10):
777–780 (1935).
9. E. Schrödinger E,”Discussion of
probability relations between separated systems”. Mathematical
Proceedings of the Cambridge Philosophical Society. 31 (4): 555–563
(1935).
10. Schrödinger E, Probability relations
between separated systems, Mathematical Proceedings of the
Cambridge Philosophical Society, 32 (1936) 446-452.
11. Yu F TS, Introduction to Diffraction,
Information Processing and Holography, (MIT Press, Cambridge,
Mass), 1973.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 8-10, 2017, 291-298
Applications of high-resolution cavity ring-down
spectroscopy
for non-invasive medical diagnostics
Manik
Pradhan
S
N Bose National Centre for Basic Sciences, Salt Lake, Sector III,
Kolkata-700 106, India
___________________________________________________________________________________________________________________________________
Recent
progress in the development of external-cavity quantum cascade
lasers (EC-QCLs) in the mid-IR spectral region may be effective for
high-resolution spectroscopic applications and multiple-trace gas
detection. When QCLs are employed in the high-finesse optical
cavity-enhanced spectroscopy techniques such as cavity ring-down
spectroscopy (CRDS), the simultaneous and real-time detection of
numerous trace species in exhaled breath are possible with
ultra-high sensitivity and molecular specificity. In this short
article, we briefly describe the basic principle of CRDS technique,
its principal advantages and one of the potential application areas
of CRDS method, in particular in the field of non-invasive medical
diagnosis of diseases through breath analysis. © Anita
Publications. All rights reserved.
Keywords:
External-cavity quantum cascade lasers (EC-QCLs), Cavity ring-down
spectroscopy (CRDS)
Total Refs : 20
1. Risby T H, Tittel F K, Opt Engg,
49(2010)111123; doi:10.1117/1.3498768
2. Kim S, Young C, Vidakovic
B, Gabram-Mendola S G A, Bayer C W, Mizaikoff B, IEEE Sensors J,
10(2010)145-158.
3. Philips M, Sci Am. (Int.
Ed.), July (1992), p 52
4. Wysocki G, Lewicki R, Curl
R F, Tittel F K, Diehl L, Capasso F, Troccoli M, Hofler G, Bour D,
Corzine S, Maulini R, Giovannini M, Faist J,
Appl
Phy B, 92(2008)305-311.
5. Tittel F K, Richter D,
Fried A, Top Appl Phys, 89(2003)458-529.
6. Banik G D, Som S, Maity A,
Pal M, Maithani S, Mandal S, Pradhan M. Anal Methods,
9(2017)2315-2320.
7. De A, Banik G, Maity A,
Pal M, Pradhan M, Opt Lett, 41(2016)1949-1952.
8. O’Keefe A, Deacon D A G,
Rev Sci Instrumen, 59(1988)2544; doi.org/10.1063/1.1139895
9. Scherer J J, Paul J
B, O'Keefe A, Saykally R, Chem Rev, 97(1997)25-51.
10. Wheeler M D, Newman S M,
Orr-Ewing A J, Ashfold M N R, J Chem Soc Faraday Trans,
94(1998)337-351.
11. Mazurenka M I, Orr-Ewing A
J, Peverall P, Ritchie GAD, Ann Rep C, 101(2005)100-142.
12. Wheeler M D, Orr-Ewing A
J, Ashfold M N R, J Chem Phys, 107(1997)7591;
doi.org/10.1063/1.475108
13. Fawcett B L, Parks A M,
Shallcross D E, Orr-Ewing A J, Phys Chem Chem Phys,
4(2002)5960-5965.
14. Bechtel K L, Zare R N,
Kachanov A A, Sanders S S, Paldus B A, Anal Chem,
77(2004)1177-1182.
15. Pipino A C R, Hudgens J W,
Huie R E, Rev Sci Instrum, 68(1997)2978;
doi.org/10.1063/1.1148230
16. Förstermann U, Sessa W C,
Eur Heart J, 33(2012)829-837.
17. Coleman J W, Int
Immunopharmacol, 1(2001)1397-1406.
18. Mathew T L, Pownraj P,
Abdulla S, Pullithadathil B, Diagnostics, 5(2015)27-60.
19. Ghosh C, Banik G, Maity A,
Som S, Chakraborty A, Selvan C, Ghosh S, Chowdhury S, Pradhan M,
Scientific Reports, 5(2015)8137;
doi: 10.1038/srep08137
20. Ghosh C, Mukhopadhyay P, Ghosh S, Pradhan M,
Scientific Reports, 5(2015)11959; doi:
10.1038/srep11959
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 8-10, 2017, 299-308
Effect
of sputtering power on structural, morphological
and optical properties of Zinc oxide thin
films
Beer
Pal Singha*, Vinay Kumarb, and Ashwani Kumarc
aDepartment
of Physics, CCS University Campus, Meerut- 250 004 ,
India
bDepartment of Earthquake Engineering, Indian Institute of
Technology Roorkee, Roorkee- 247 667, India
cNanoscience Laboratory, Institute Instrumentation Centre, I
I T Roorkee, Roorkee- 247 667, India
___________________________________________________________________________________________________________________________________
In this
work, we report the synthesis of zinc oxide (ZnO) thin films using
reactive magnetron sputtering technique and the effect of
sputtering power (40, 60 and 80 W) on their structural,
morphological and optical properties. The newly synthesized
thin films were characterised using powder X-ray diffraction (XRD),
Field emission scanning electron microscopy (FE-SEM), Energy
dispersive X-ray analysis (EDXA) and UV-NIR visible spectroscopy.
XRD analysis exhibited the hexagonal wurtzite structure with
increase in average crystallite size and hydrophobicity with the
increase of sputtering power. The contact angle of ZnO thin films
were determined by contact goniometer. ZnO thin films deposited
with low sputtering power (40W) exhibit higher optical
transmittance (T~82 %) and larger band gap (~3.3 e V) as evident
from transmittance measurements in the wavelength range from 300 to
800 nm. © Anita Publications. All rights reserved.
Keywords:
ZnO thin films, Reactive sputtering, Contact angle, Optical
properties.
Total Refs : 28
1. Lee K M, Lai C W, K S, Juan J C, Recent
developments of zinc oxide based photocatalyst in water treatment
technology: A review,
Water
Res, 88(2016)428-448; doi:org/10.1016/j.watres.2015.09.045
2. Wei A, Pan L, Huang W, Recent
progress in the ZnO nanostructure-based sensors, Mater Sci Engg B,
176 (2011)1409-1421;
doi.org/10.1016/j.mseb.2011.09.005
3. Tan M, Qui G, Tinag Y P,
Effects of ZnO nanoparticles on wastewater treatment and their
removal behavior in a membrane bioreactor,
Bioresour
Technol,
185(2015)125-133; doi.org/10.1016/j.biortech.2015.02.094
4. Bae J, Song M K, Park Y J,
Kim J M, Liu M, Wang Z L, Fiber Supercapacitors Made of
Nanowire-Fiber Hybrid Structures for
Wearable/Flexible
Energy
Storage, Angewandte Chemie, 50(2011)1-6; doi:
10.1002/anie.201006062
5. Rodnyi P A, Khodyuk I V,
Optical and Luminescence Properties of Zinc Oxide, Opt &
Spectrosc, 111(2011)776-785.
6. Ye Changhui, Fang
Xiaosheng, Hao Yufeng, Teng Xuemei, Zhang Lide, Zinc Oxide
Nanostructures: Morphology Derivation and
Evolution,
J
Phys Chem B, 109(2005)19758-19765.
7. Elkady M F, Hassan H S,
Hafez E E, Ahmed F, Construction of Zinc Oxide into Different
Morphological Structures to be Utilized as
Antimicrobial
Agent
against Multidrug Resistant Bacteria, Bioinorg Chem Appl,
2015(2015)1-20; doi:org/10.1155/2015/536854.
8. Šarića A, Štefanića G,
Dražićb G, Gotića M, Solvothermal synthesis of zinc oxide
microspheres, J Alloys Compd, 652(2015)91-99.
9. Wallace R, Brown P, Brydson
R, Wegner K, Milne S J, Synthesis of ZnO nanoparticles by flame
spray pyrolysis and characterization protocol,
J
Mater Sci, 48(2013)6393-6403.
10. Rana A H S, Kang Mingi, Kim
Hyun-Seok, Microwave-assisted Facile and Ultrafast Growth of ZnO
Nanostructures and Proposition
of
Alternative Microwave-assisted Methods to Address Growth Stoppage,
Sci Rep, 6(2016)1-13.
11. Vaghayenegar M, Kermanpur A, Abbasi M
H, Formation mechanism of ZnO nanorods produced by the
electromagnetic levitational
gas
condensation method, Scientia Iranica, 18(2011)1647-1651.
12. Chen Z, Shum K, Salagaj T, Zhang W,
Strobl K, ZnO Thin Films Synthesized by Chemical Vapor Deposition,
IEEE,
978(2010)1-6;
doi: 10.1109/LISAT.2010.5478331
13. Azizian-Kalandaragha Y,
Khodayarib Ali, Behboudniac M, Ultrasound-assisted synthesis of ZnO
semiconductor nanostructures, Mat Sci
Semicon
Proc, 12(2009)142-145.
14. Li Zhengwei, Gao W, ZnO thin films
with DC and RF reactive sputtering, Mat Lett,
58(2004)1363-1370.
15. Youssef S, Combette P, Podlecki
J, Al Asmar R, Foucaran A, Structural and optical
characterization of ZnO thin films deposited by reactive
rf
magnetron sputtering, Cryst Growth Des, 9(2009)1088-1094.
16. Hoon Jian-Wei, Chan Kah-Yoong,
Krishnasamy Jegenathan, Tou Teck-Yong, Knipp Dietm; Direct current
magnetron sputter-deposited ZnO
thin
films, Appl Surf Sci, 257(2011)2508-2515.
17. Mishra P K, Gautam Y K, Kumar A, Jain
R K, Prasad J N, Choudhary A K, Chandra R, Thickness dependent
structural, optical and electrical
properties
of CuIn0.8Ga0.2Se2 thin films deposited by pulsed laser deposition,
AIP Conf Proc,1576(2014)33-37.
18. Szymańskaa Magdalena, Gierałtowska
Sylwia, Wachnicki Łukasz, Grobelny Marcin, Makowska Katarzyna,
Mroczyński Robert, Effect
of
reactive magnetron sputtering parameters on structural and
electrical properties of hafnium oxide thin films, Appl Surf Sci,
301(2014)28-33.
19. Kwak D J, Park M W, Sung Y M,
Discharge power dependence of structural and electrical properties
of Al-doped ZnO conducting film
by
magnetron sputtering, Vacuum, 83(2009)113-118.
20. Yan L T, Rath J K, Schropp R E I,
Electrical properties of vacuum-annealed titanium-doped indium
oxide films, Appl Surf Sci, 257(2011)9461-9465.
21. Davea V, Gupta H O, Chandra R,
Nanostructured hydrophobic DC sputtered inorganic oxide coating for
outdoor glass insulators,
Appl
Surf Sci, 295(2014)231-239.
22. Dave P Y, Rawal S K, Synthesis and
studies of sputterd deposited ZnO films, Res Jr Mat Sci,
5(2017)13-16,
23. Wang D, Zhu X, Fang Y, Sun J, Zhang C,
Zhang X, Simultaneously composition and interface control for
ZnO-based dye-sensitized solar
cells
with highly enhanced efficiency, NANOSO, 10(2017)1-8.
24. Tauc J, Amorphous and Liquid
Semiconductor, (Plenum Press, New York), 1974, p 159.
25. Manjunatha K N, Paul S, Investigation
of optical properties of nickel oxide thin films deposited on
different substrates, Appl Surf Sci, 352(2015)10-15.
26. Daniel G P, Justinvictor V B, Prabitha
B N, Joy K, Peter K, Thomas P V, Effect of annealing temperature on
the structural and optical
properties
of ZnO thin films prepared by RF magnetron sputtering, Physica B,
405(2010)1782-1786.
27. Manifacier J C, Gasiot J, Fillard J P,
A simple method for the determination of the optical constants n, h
and the thickness of a weakly absorbing
thin
film, J Phys E, 9(1976)1002-1004.
28. Jerman M, Qiao Z, Mergel D, Refractive
index of thin films of SiO2, ZrO2, and HfO2 as a function of the
films mass density,
Appl Opt, 44(2005)3006-3012.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 8-10, 2017, 309-314
Specific
absorption rate for human skin due to radiation of
cylindrical
wave-front
from transmission tower
Rahul
Kaushik and P P Pathak
Department
of Physics, Gurukula Kangri Vishwavidyalaya, Haridwar-249 404,
india
___________________________________________________________________________________________________________________________________
The
internal electric fields and specific absorption rate (SAR) are
calculated for the human skin tissue due to cylindrical wave-front
radiated from vertical sector antenna used in transmission tower of
a mobile phone base station. The calculations have been made for
Global System for Mobile communication (GSM), for 2G (GSM900) 935 -
960 MHz, for 2G (GSM1800) 1810 – 1880 MHz and 2110 – 2170 MHz for
3G. The obtained values are compared with the safe limits of
exposure to electromagnetic radiations provided by the
international agencies and found that the radiation of different
frequencies come under the harmful limit for humans. © Anita
Publications. All rights reserved.
Keywords:
Radiation hazards, Bioelectromagnetics, Specific absorption rate,
Skin depth.
Total Refs : 21
1. Pathak P P , Kumar V, Vats R P, Harmful
electro-magnetic environment near transmission tower, Indian J
Radio Space Phys, 32(2003)238-241.
2. Obahiagbon K, Isabona J,
Specific Absorption Rate and Temperature rise Computation in Human
Tissues due to Electromagnetic Field emission
from
Mobile Phones at 900 MHz and 1800 MHz, Computing, Information
Systems, Development Informatics & Allied Research
Journal, 6(2015)53-62.
3. Kodera Sachiko, Gomez-Tames
Jose, Hirata Akimasa, Masuda Hiroshi, Arima Takuji, Watanabe
Soichi, Multiphysics and Thermal Response
Models
to Improve Accuracy of Local Temperature Estimation in Rat Cortex
under Microwave Exposure, Int J Environ Res Public
Health,
14(2017)358;
doi:10.3390/ijerph14040358
4. Kumar V, Sharma A, Kumar A,
Ahmad M, Gupta G K, Interaction of Mobile Phone Waves with Tissues
of Skeletal Muscles and Bone of
Human
Beings, IOSRJPBS, 1(2012)06-16.
5. Kumar S, Pathak P P,
Induced electric field inside and surface of human brain due to
mobile phone radiation, J Natural Phys Sci (India),
20(2006)47-50.
6. Kumar G, Report on Cell
Tower Radiation,
“https://www.ee.iitb.ac.in/~mwave/GK-cell-tower-rad-report-DOT-Dec2010.pdf”,
2010.
7. Griffith D J, Introduction
to electrodynamics, (Pearson education Inc., Upper Saddle River,
New Jersey, USA), (Equation 9.63), 4th edn, 2013,p 399
8. Pathak P P, Bio-Thermal
Effects due to Electromagnetic Radiations, XXIX General Assembly of
the International Union of Radio Science
(URSI
08), Chicago IL, USA, 9-16 Aug 2008 paper no 2394(K03).
9. Polk C, Handbook of
biological effects of electromagnetic Fields, (eds) C Polk, E
Postow (CRC Press, Boca Raton USA), 1996, pp 1-23.
10. Hasgall P A, Di Gennaro F, Baumgartner
C, Neufeld E, Gosselin M C, Payne D, Klingenböck A, Kuster N, “IT’
IS Database for thermal
and
electromagnetic parameters of biological tissues,” Version 3.1,
October 13th, 2016, doi: 10.13099/VIP21000-03-1.
11. Stuchly M A, Stuchly S S, Biological
effects of electromagnetic fields, Phys Rev (USA),
61(1981)435-513.
12. Ali Usman, Ullah Sadiq, Khan Jalal,
Shafi Muhammad, Kamal Babar, Basir Abdul, Flint James A, Seager Rob
D, Design and SAR Analysis of
Wearable
Antenna on Various Parts of Human Body, Using Conventional and
Artificial Ground Planes, J Electr Eng Technol,
12(2016)1921-1932.
13. Pandey Shivi, Peak SAR reduction in
human head using meta-material structure, Int J Eng Sci & Res
Tech, 6(2017) 286-291.
14. Adair E R, Peterson R C,
Biological effects of radio frequency radiation, IEEE Transactions
on microwave theory and techniques, 50(2002)953-962.
15. Karthik Varshini, Rao T R, Thermal
Distribution based Investigations on Electromagnetic Interactions
with the Human Body for Wearable Wireless
Devices,
Progress in Electromagnetics Research M, 50(2016)141-150.
16. Guy A W, Non-ionizing radiation:
Dissymmetry and interaction, ACGIH symposium, 1979, 75.
17. United States Federal communications
commission (US FCC) safety guidelines, Radio frequency safety, OET
(Office of Engineering &
Technology),
Online available at
http://www.fcc.gov/oet/rfsafety/rf-faqs.html.
18. International Commission on
Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for
limiting exposure to time-varying electric,
magnetic
and electromagnetic fields (up to 300 GHz), Health Phys,
74(1998)494-522.
19. National council on radiation
protection and measurement (NCRP), Biological effects and exposure
criteria for radio frequency
electromagnetic
fields, Maryland, 1986.
20. Institute of electrical and
electronics engineers (IEEE), IEEE Standards for Safety levels with
Respect to Human Exposure to Radio
Frequency
Electromagnetic Fields, 3 kHz to 300 GHz, C95-1, 2005.
21. World Health Organisation (WHO),
Research Agenda for Radiofrequency Fields. Online available
at
http://apps.who.int/iris/bitstream/10665/44396/1/9789241599948_eng.pdf
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 8-10, 2017, 315-322
Computational Investigations of quinacridone on silver and gold
clusters:
Application to Nonlinear Optical and OLED
devices
U Reeta
Felscia, Beulah J M Rajkumar*
PG
& Research Department of Physics, Lady Doak College, Madurai
625002, India
___________________________________________________________________________________________________________________________________
Interaction
of quinacradone (QA) on silver and gold clusters has been
investigated using computational methods. Hyperpolarizabilities
computed theoretically point towards the possible use of QA
adsorbed on Ag3 and Au3 in the rational design of NLO devices. The
red shift in the simulated UV-Vis spectra confirms the process of
adsorption on metal clusters, which is mainly due to the
electrostatic interaction between the metals and QA. This
interaction induces variations in the structural parameters of QA,
which are confirmed by the NBO analysis and the MEP plot. Reduction
in the hole reorganization energy along with the increment in
hyperpolarizability suggest that QA adsorbed on silver cluster can
be used as an effective material in OLED and NLO devices.© Anita
Publications. All rights reserved..
Keywords:
Quinacridotne, NBO, Nonlinear Optics, MEP,DFT.
Total Refs : 22
1. Wagner T,
Györök M, Huber D, Zeppenfeld P, E. D.Głowacki, J PhysChem C
Nanomater Interfaces. 118(2014)10911-10920.
2. Puerto E D, Domingo C, Ramos JVG,
Cortes S S, Langmuir, 30(2014)753-761
3. I. Osaka, M. Akita,T.
Koganezawa,K.Takimiya,Chem Mater, 24( 2012) 1235−1243
4. H. Li, C. Gu, L.Jiang, L. Wei, W.
Hu, H. Fu, J, Mater Chem C, 1 (2013)2021-2027
5. Javan M J, Jamshidi Z, Tehrania Z
A, Fattahi A, Org Biomol Chem, 10(2012)9373-9382
6. S. H.Jeong,H.Choi,J.Y.Kim,T.W.Lee,
Part. Part. Syst Charact, 32(2015)164-175.
7. Sajan D, Chaitanya K, Safakath K,
Philip R, Suthan T, Rajesh N P , Spectrochim Acta A,
106(2013)253-261.
8. U. R.Felscia, B.J.M.Rajkumar,
P.Sankar, R.Philip, M.B.Mary, Spectrochim. Acta Part A 184 (2017)
286-293.
9. T. K Mandal, S. Dutta, S. K Pati,
J. Chem. Sci., 121, (2009), 873–880.
10. Liu W L, Wang Z G, Zheng Z R, Li A H, Su W H,
J Phys Chem A,112(2008)10580-10585.
11. Pho T V, Zalar P, Garcia A, Nguyen T Q, Wudl
F, Chem Commun, 46(2010)8210-8212. wudl@chem.ucsb.edu;
12. Z. Jamshidi,H.Farhangian,Z.A.Tehrani,
International Journal of Quantum Chemistry
113(2013)1062–1070
13. H.J.Song, D.H.Kim, E.J.Lee, J.R.Hawa,
D.K.Moon,Solar
EnergyMaterials&SolarCells123(2014)112–121
14. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E,
Robb M A, Cheeseman J R, Montgomery J A (Jr), Vreven T, Kudin K N,
Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci
B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M,
Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T,
Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P,
Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev
O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y,
Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G,
Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A
D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G,
Clifford S, Cioslowski J, Stefanov B, Liu B G, Liashenko A, Piskorz
P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C
Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W,
Wong M W, Gonzalez C, Pople J A, Gaussian 03, Revision B.03;
Gaussian Inc.: Pittsburgh, PA, 2003.
15. S. I. Gorelsky, SWizard program, revision
2.0, <http://www.sg-chem.net/>.
16. R. Gayathri, M. Arivazhagan,
Spectrochim.Acta. Part A 81 (2011) 242-250.
17. Krishnakumar V, Murugeswari K,
Surumbarkuzhali N, Spectrochim Acta A,
114(2013)410-420.
18. S. Sanyal, A.K. Manna, S.K. Pati, J. Phys.
Chem. C 117 (2013) 825−836.
19. H. Gao, TheorChemAcc 127 (2010)
759–763.
20. A. Suvitha, S. Periandy, S. Boomadevi, M.
Govindarajan,Spectrochim. Acta. Part A 117 (2014)
216–224
21. A. Esme, S.G.Sagdinc, J Mol Struct, 1048
(2013)185-195
22. Balachandran V, Rajeswari S, Lalitha S,
Spectrochim Acta A, 113(2013)268-280.
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar