ap
An International Peer Reviewed Research Journal
25th Anniversary Year of AJP-2016
Guest Editorial
Prof. Dr. Dr. h.c. Wolfgang Kiefer
An Appreciation to Wolfgang Kiefer on the occasion of his 75th birthday
Wolfgang Kiefer one of the most distinguished Raman spectroscopists will celebrate his 75th birthday on February 12, 2016. It gives us great pleasure to dedicate him on this occasion the 2nd issue of 25th Anniversary of Asian Journal of Physics (ISSN 0971-3093).This anniversary issue contains eight contributions by friends, colleagues and former students of Wolfgang Kiefer. The contributions nicely feature the broad range of Raman spectroscopic approaches and their broad applicability.
Wolfgang Kiefer worked throughout his impressive scientific career for the further development of Raman spectroscopy and its application towards new scientific fields. Raman spectroscopy fascinated Wolfgang Kiefer already as a diploma and PhD student and was a solid companion throughout his scientific career. Wolfgang Kiefer developed and applied a great number of Raman approaches to unravel the structure of molecules in the gas, condensed and solid phase and on metal surfaces. In addition, the ultrafast dynamics taking place within and between these molecular systems took center stage of his scientific work.
Wolfgang Kiefer was born in 1941 in Pforzheim, Germany. He studied physics in Munich. After his PhD in 1970, he went for postgraduate studies to the National Research Council in Ottawa, Canada where he stayed for two years. He subsequently returned to Munich where he finished his habilitation in 1977. Between 1977 to 1984, Wolfgang Kiefer was a Professor in Bayreuth, Germany and from 1985 to 1988, he was appointed as full professor of Physics at the University of Graz, Austria. In 1988, he received a call for the chair for Physical Chemistry at the University of Wuerzburg, Germany, which he accepted. He stayed in Wuerzburguntil his retirement in 2006. Wolfgang Kiefer graduated 85 PhD students among them are twelve who also successfully pursued an academic career as Professor. The Kiefer Raman labs were throughout his scientific career an extremely popular meeting place, hosting a large number of friends and colleagues as well as students of many different countries who always have enjoyed the fruitful and also pleasant stays in the Kiefer group.
It is impossible and would go much beyond this brief editorial to comprehensively summarize the scientific achievements of Wolfgang Kiefer, which are published in 865 (!) publications. In the following, just some key words of his groundbreaking research are listed:
The eight contributions of this special issue nicely reflect this list of topics and deal with SERS, resonance Raman, theoretical concepts to interpret Raman spectra, Raman spectroscopy on glasses, femtosecond four-wave mixing spectroscopy, Raman spectroscopy in combination with DFT calculations. These contributions nicely show how Wolfgang Kiefer’s work inspired the authors and how he infected most of the senior authors with the “Raman gene”.
Raman spectroscopy has matured to become one of the most important laser spectroscopic methods and has found its way into almost all natural sciences. Raman spectroscopy has become an indispensable analytical method for physics, chemistry, mineralogy and also recently for the life sciences and medicine.It is not exaggerated to say that the work of Wolfgang Kiefer significantly contributed to this success story of Raman spectroscopy. It is too bad, that the inventor of Raman spectroscopy the great Indian scientist CV Raman is not able to witness the scientific impact his invention had and more importantly will still have even after more than 80 years of its discovery. However, he would be definitely very proud of what his “Raman followers” like Wolfgang Kiefer achieved and how they utilized his invention.
It is no surprise and more than deserved that Wolfgang Kiefer was awarded with the Raman Lifetime Award on the XXIV. International Conference on Raman Spectroscopy (ICORS 2014) in Jena. Despite this latest award, Wolfgang Kiefer received several more prestigious awards. Here, we would only like to mention the Pittsburg Spectroscopy Award and an Honorary Doctor degree from the University of Cluj-Napoca, Romania.
Although Wolfgang Kiefer is celebrating his 75thbirthday, he is still “infected by the virus Raman spectroscopy”. In the basement of his house in the city of Eisingen he established a small but fine Raman lab he calls “Eisingen Laboratory for Applied Raman Spectroscopy” where he performs research work he always wanted to do but had no time for. Thus, for Wolfgang Kiefer Raman spectroscopy was not only his profession but also his hobby.
We hope that you will enjoy reading this 25th Anniversary of Asian Journal of Physics, which is dedicated to you.
Dear Wolfgang we wish you a happy 75th birthday and lots more exciting research results from your Eisingen Laboratory for Applied Raman Spectroscopy! But most importantly we wish you good health, long life and prosperity in the circle of your family!
Jürgen Popp and Michael Schmitt on behalf of all authors and the editorial board of AJP.
Asian Journal of Physics, Vol 25 NO 2,
2016
Asian Journal of Physics Vol. 25 No 2 (2016) 121-130
Two dimensional graphene derivatives supported isolated gold nanoparticles as an efficient SERS substrate
Shiju Abrahama,b, Matthias Königb, Shobhit Pandeyc, Sunil K. Srivastavad, Bernd Walkenfortb, Anchal Srivastavaa*
aDepartment of Physics, Banaras Hindu University, Varanasi, 221005, India
bFaculty of Chemistry, University of Duisburg, 45141 Essen, Germany
cMetallurgical Engineering Department, Indian Institute of Technology – (BHU), Varanasi
dDepartment of Pure and Applied Physics, Guru Ghasidas University, Bilaspur, 495009, India
___________________________________________________________________________________________________________________________________
The
present work accomplishes surface enhanced Raman scattering (SERS)
studies using the combination of stable, diluted and isolated gold
nanoparticles (Au NPs) of tailored size (~ 50 nm) and distribution
on two dimensional carbon nanostructures (2D-CNS) i.e. graphene
oxide (GO) and reduced graphene Oxide (RGO). Fabricated using a
simple, quick and cost effective method, these SERS substrates have
enough synergistic enhancement from each Au NPs and underlying CNS
matrix with sensitivity enough to easily detect 10-6
molar concentrations of analyte, 4-mercaptobenzoic acid (4-MBA).
Further, uniform distribution of Au NPs ensures great
reproducibility showing potential for standardization in future. ©
Anita Publications. All rights reserved.
Total Refs : 17
1. Marcano D C, Kosynkin D V, Berlin J M,
Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M,ACS
Nano;4 (2010) 4806.
2. Li D, Müller M B, Gilje S,
Kaner R B, Wallace G G, Nat Nanotechnol, 3 (2008)101.
3. Perrault S D, Chan W C W, J
Am Chem Soc,;131 (2009) 17042.
4. Park S, An J, Potts J R,
Velamakanni A, Murali S, Ruoff R S, Carbon, 49 (2011)
3019.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 131-136
Encapsulation of optical gratings using nanoporous alumina layers
Lilit Ghazaryan, Ernst-Bernhard Kley, Adriana Szeghalmi*
Institute
of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller
University Jena, Max-Wien-Platz 1, 07743 Jena,
Germany
___________________________________________________________________________________________________________________________________
In this
work, we describe a method to encapsulate optical gratings with
nanoporous Al2O3. The encapsulation process
consists of covering a grating, filled with a sacrificial material,
by an organic-inorganic thin alucone layer. The element is than
heated upto 400 °C to remove the organic component from the alucone
film. The nanoporous Al2O3 film, formed after
the removal of the organic component acts as a diffusion layer for
the decomposition products of the sacrificial material. The
complete removal of the sacrificial material was confirmed by
energy dispersive x-ray spectroscopy (EDX). © Anita Publications.
All rights reserved.
Keywords: Optical gratings, Energy dispersive x-ray spectroscopy
(EDX).
Total Refs : 20
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 137-156
Mechanism of Intramolecular Multi-Electron Photochemistry in a 4H-Imidazole Ruthenium Dye
Linda Zedler,1,2 Stephan Kupfer,2 Sven Krieck,3 Rainer Beckert,4 Sven Rau,5 Michael Schmitt,2 Jürgen Popp,1,2 Benjamin Dietzek1,2
1 Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
2 Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
3 Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße 8, 07743 Jena, Germany
4 Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
5 Institute of Inorganic Chemistry I, University Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
___________________________________________________________________________________________________________________________________
Ruthenium
complexes containing a 4H-imidazole chromophore feature a
spectrally extremely broad absorption in the UV-Vis and near IR
spectral range. In addition, those complexes show a notable redox
activity and high chemical stability. These important
characteristics render these systems promising for electron storage
and inter-molecular electron transfer. But in order to improve the
function of electron transfer or storage by modifying the
structure, photo-induced structural changes and charge transfer
processes with the molecular functionality need to be correlated.
This includes also a fundamental understanding of relevant
photo-excited states, complex stability and reaction pathways,
particularly for multiple electron transfer steps in order to
identify parasitic processes, which delimitate the functionality.
However, the reactivity and short lifetime of electronically
excited complexes renders the detailed spectroscopic
characterization cumbersome. In this contribution the combination
of spectroscopic tools with the electrochemical preparation of
single and double reduced states is used to model the long-time
behavior of photo-activated complexes. Specifically, UV-Vis and
resonance Raman spectroscopy is performed to investigate a four
times quasi-reversible reducible ruthenium complex and the results
are analyzed using computational methods. © Anita Publications. All
rights reserved.
Keywords:
Ruthenium complexes, 4H-imidazole, Chromophore, Redox
activity, Life time, UV-Vis and Resonance Raman
spectroscopy.
Total Refs : 30
1. Zeitler K, Angew ChemInt Ed,
48(2009)9785-9789
2. Balzani V, Juris A, Venturi
M, Campagna S, Serroni S, Chem Rev, 96(1996) 759-834
3. Elvington M, Brown J,
Arachchige S M, Brewer K J, J Am Chem Soc,
129(2007)10644-10645
4. Gray H B, Maverick A W,
Science, 214(1981) 1201–1205
5. Esswein A J, Nocera D G,
Chem Rev, 107(2007)4022-4047 nocera@mit.edu
6. Zedler L, Guthmuller J,
Rabelo de Moraes I, Kupfer S, Krieck S, Schmitt M, Popp J, Rau S,
Dietzek B, Chem Commun, 50(2014) 5227-5229
7. Mourtzis N, Carballada P C,
Felici M, Nolte R J M, Williams R M, Cola L, de Feiters M C,
PhysChemChemPhys, 13(2011) 7903–7909
8. Rosenthal J, Bachman J,
Dempsey J L, Esswein A J, Gray T G, Hodgkiss J M, Manke D R,
Luckett T D, Pistorio B J, Veige A S, Nocera D G,
Coord
ChemRev, 249(2005) 1316–1326
9. Chiorboli C, Fracasso S,
Scandola F, Campagna S, Serroni S, Konduri R, MacDonnell F M, Chem
Commun, (2003) 1658–1659
10. Zedler L, Kupfer S, Rabelo de Moraes
I, Wächtler M, Beckert R, Schmitt M, Popp J, Rau S, Dietzek B, Chem
– Eur J, 20(2014) 3793–3799
11. Sammes M P, Katritzky A R, The
4H-Imidazoles. (Advances in Heterocyclic Chemistry, Academic Press)
1984, pp 413–450,
12. Gebauer T, Beckert R, Weiss D, Knop K,
Käpplinger C, Görls H, ChemCommun, (2004) 1860–1861
13. Beckert R, Atzrodt J, Görls H,
Heterocycles, (1999) 763–783
14. Wächtler M, Kupfer S, Guthmuller J,
Rau S, González L, Dietzek B, J PhysChem C, 116(2012)
25664–25676
15. Kupfer S, Guthmuller J, Wächtler M,
Losse S, Rau S, Dietzek B, Popp J, González L, PhysChemChemPhys,
13(2011) 15580–15588
16. Blumhoff J, Beckert R, Rau S, Losse S,
Matschke M, Günther W, Görls H, Eur J Inorg Chem,
(2009)2162–2169
17. Kukura P, McCamant D W, Mathies R A,
AnnuRevPhysChem, 58(2007) 461–488
18. Sun Y, Liu Y, Turro C, J Am Chem Soc,
132(2010) 5594–5595 yujie.sun@usu.edu
19. Kaim W, Fiedler J, ChemSoc Rev,
38(2009) 3373
20. Frisch M J, Trucks G W, Schlegel H B,
Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V,
Mennucci B, Petersson G A,
Nakatsuji
H, Caricato M, Li X, Hratchian H P, Izmaylov A F, J, Bloino G Z,
Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J,
Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T,
Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J,
Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J,
Raghavachari K, Rendell A, Burant J,C, Iyengar S S, Tomasi J, Cossi
M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V,
Adamo C, Jaramillo J, Gomperts R, Stratmann R E O, Yazyev A J A R,
Cammi C P, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G,
Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D,
Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian
09 Revision A.1 (Gaussian Inc, Wallingford CT) 2009
21. Becke A D, J Chem Phys, 98(1993)
5648–5652
22. Hariharan P C, Pople J A,
TheorChimActa, 28(1973) 213 – 222
23. Andrae D, Häusermann U, Dolg M, Stoll
H, Preuß H, TheorChim Acta, 77(1990) 123–141
24. Merrick J P, Moran D, Radom L, J Phys
Chem, 111(2007) 11683
25. Mennucci B, Cappelli C, Guido C A,
Cammi R, Tomasi J, J Phys Chem A, 113(2009) 3009–3020
26. Page J B, Tonks D L, J ChemPhys,
75(1981) 5694–5708
27. Wächtler M, Guthmuller J, González L,
Dietzek B, Coord Chem Rev, 256(2012) 1479 – 1508
28. Guthmuller J, González L, Phys
ChemChemPhys, 12(2010)14812-14821
29. Losse S, Redoxaktive metallorganische
Farbstoffkomplexe zur Verwendung in Photovoltaik und Photokatalyse.
(Thesis, Friedrich-Schiller-
Universität Jena) 2010
30.
Tschierlei S, Karnahl M, Presselt M, Dietzek B, Guthmuller J,
González L, Schmitt M, Rau S, Popp J, Angew Chem Int Ed,
49(2010)3981-3984
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 157-165
Dehydration of 3-octanol studied by 2D Raman, IR and NMR hetero correlation spectroscopy
Robby Fritzscha, Robert Geitnera, Thomas W. Bocklitza, Benjamin Dietzeka,c, Micheal Schmitta and Jürgen Poppa,b,c
a Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
b Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7,07743, Jena, Germany
c Leibniz Institute for Photonic Technology (IPHT) Jena, Albert-Einstein-Str. 9, 07745, Jena, Germany.
___________________________________________________________________________________________________________________________________
2D
correlation spectroscopy is a useful technique for analyzing
chemical reactions. We studied the acid catalyzed dehydration of
3‑octanol at 150 °C with FT‑Raman, FT‑ATR‑IR and
1H‑NMR and evaluated the use of 2D correlation
spectroscopy in particular the correlation of spectroscopic data
from different methods with one another. This 2D hetero correlation
approach proved to be useful in validating the signal assignment
but otherwise limited in use. We could also show that all four
possible octene isomers are forming over the course of the
reaction. © Anita Publications. All rights
reserved.
Total Refs : 20
1. Noda I, Bull Am Phys Soc,
31 (1986)520-524.
2. Noda I, Appl Spectrosc,
47(1993)1329-1336.
3. Noda I, J Am Chem Soc,
111(1989)8116-8118.
4. Noda I, Appl Spectrosc,
44(1990)550-561.
5. Noda I, Appl. Spectrosc,
54(2000)994-999.
6. Noda I, Vib Spectrosc,
60(2012)146-153.
7. Noda I, J Mol Struct,
799(2006)41-47.
8. Geitner R, Kötteritzsch J, Siegmann M,
Bocklitz T, Hager M, Schubert U S, Graefe S, Dietzek B, Schmitt M,
Popp J, Phys Chem Chem Phys, 17(2015)22587-22595.
9. Noda I, Chemtracts: Macromolecular Chemistry,
1(1990)89-105.
10.
Barton F E, Himmelsbach D S, Duckworth J H, Smith M J, Appl
Spectrosc, 46(1992)420-429.
11.
Ryu S R, Bae W M, Hong W J, Ihn K J, Jung Y M, Vib Spectrosc,
60(2012)168-172.
12.
Sovová Ž, Kopecký V, Pazderka T, Hofbauerová K, Rozbeský D, Vaněk
O, Bezouška K, Ettrich R, J Mol Model,
17(2011)1353-1370.
13.
Yamasaki H, Morita S, J Appl Polym
Sci,119(2011)871-881.
14.
Noda I, Chin Chem Lett, 26(2014)167-172.
15.
R Core team, R: A Language and Environment for Statistical
Computing. (R Foundation for Statistical Computing, Wien, Austria),
2014.
16.
Wong J W H, Cagney G, Cartwright H M, Bioinformatics,
21(2005)2088-2090.
17.
Socrates G, Infrared and Raman characteristic group frequencies,
(John Wiley & Sons, West Sussex), 2007.
18.
Larsen C R, Erdogan G, Grotjahn D B, J Am Chem Soc,
136(2014)1226-1229.
19.
SDBSWeb: Spectral Database for Organic Compounds. National
Institute of Advanced Industrial Science and Technology (AIST),
date of access: 13.10.2015.
20.
Reichenbächer M, Popp J, Strukturanalytik organischer und
anorganischer Verbindungen, (B G Teubner Verlag / GWV Fachverlage
GmbH, Wiesbaden, Wiesbaden), 2007.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 167-177
Isotopic Effects in (Surface Enhanced) Raman Spectroscopy – Single Molecule Aspects
Stephan Kupfer,1 Volker Deckert,1,2 Stefanie Gräfe1
1 Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
2 Institute of Photonic Technology Jena (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
___________________________________________________________________________________________________________________________________
Generally,
isotopic effects are of minor importance in standard vibrational
spectroscopy, this is in particular the case, if the signal
originates form a macroscopic sample. Consequently, an average
spectrum with respect to the natural isotopic redundancy is
obtained. However, for state-of-the-art high-resolution techniques,
e.g. surface-enhanced Raman spectroscopy, where only a small number
of molecules (or even merely a single molecule) are the focus of
the exciting beam, isotopic effects can have a considerable
influence on the spectral pattern. Here we present a computational
study investigating such isotopic effects on the Raman spectrum for
the 13C isotope in the thiophenol molecule. Therefore,
the Raman spectra of all four possible singly 13C doped
species are calculated at the density functional theory level of
theory and compared to the undoped thiophenol reference spectrum.
The impact of 13C substitution on the vibrational
frequencies as well as on the Raman intensities is rationalized. In
particular large effects are determined for the in plane
vibrational modes, while each of the five calculated species (one
undoped and 4 singly doped) features a unique Raman intensity
pattern. © Anita Publications. All rights
reserved.
Keywords: Isotopic effects, Laser pulses, Thiophenol,
Surface-enhanced Raman spectroscopy (SERS)
Total Refs : 32
1. Kneipp K, Wang Y, Kneipp H, Perelman L T,
Itzkan I, Dasari R, Feld M S, Phys Rev Lett,
78(1997)1667-1670.
2. Le Ru E C, Meyer M,
Etchegoin P G, J Phys Chem B, 110(2006)1944-1948.
3. Moyer P J, Schmidt J, Eng L
M, Meixner A J, J Am Chem Soc, 122(2000)5409-5410.
4. Nie S M, Emery S R,
Science, 275(1997)1102-1106.
5. Anderson M S, Appl Phys
Lett, 76 (2000)3130-3132.
6. Hayazawa N, Inouye Y,
Sekkat Z, Kawata S, Opt Commun, 183(2000)333-336.
7. Stockle R M, Suh Y D,
Deckert V, Zenobi R, Chem Phys Lett, 318(2000)131-136.
8. Tripathi A, Emmons E D,
Christesen S D, FountainIII A W, Guicheteau J A, J Phys Chem C,
117(2013)22834-22842.
9. Jung H Y, Park Y.-K, Park
S, Kim S K, Anal Chim Acta, 602(2007)236-243.
10. Taylor C E, Pemberton J E, Goodman G
G, Schoenfisch M H, Appl Spectrosc, 53(1999)1212-1221.
11. Huang Y.-F, Wu D.-Y, Zhu H.-P,
Zhao L.-B, Liu G.-K, Ren B, Tian Z.-Q, Phys Chem Chem Phys,
14(2012)8485-8497.
12. Biggs K B, Camden J P, Anker J
N, Van Duyne R P, J Phys Chem A, 113(2009)4581-4586.
13. Smirnov V V, Lanci M P, Roth J P, J
Phys Chem A, 113(2009)1934-1945.
14. Wiest O, Black K A, Houk K N, J Am
Chem Soc, 116(1994)10336-10337.
15. Nicholson K M, Sholl D S, Phys Rev B,
86(2012)134113. doi.org/10.1103/PhysRevB.86.134113
16. Hu W P, Truhlar D G, J Am Chem Soc,
118(1996)860-869.
17. Pabis A, Paluch P, Szala J, Paneth P,
J Chem Theory Comput, 5(2009)33-36 paneth@p.lodz.pl.sent Dec
20
18. Tsai W.-C, Hu W.-P, Molecules,
18(2013)4816-4843. Hu: chewph@ccu.edu.tw
19. Villano S M, Kato S, Bierbaum V M, J
Am Chem Soc, 128(2006)736-737.
20. Ashley D C, Brinkley D W, Roth J P,
Inorg Chem, 49(2010)3661-3675. Justine: jproth@jhu.edu.
21. Basova T V, Kiselev V G, Schuster
B.-E, Peisert H, Chassé T, J Raman Spectrosc, 40(2009)2080-2087.
E-mail: basova@che.nsk.su
22. Leypold C F, Reiher M, Brehm G,
Schmitt M O, Schneider S, Matousek P, Towrie M, Phys Chem Chem
Phys, 5 (2003)1149-1157. :
Schneider@chemie.uni-erlangen.de
23. Singh D, A.K. Ojha A K, Kiefer W,
Singh R K, Vib Spectrosc, 49(2009)242-250.
ranjanksingh65@rediffmail.com (R.K. Singh).
24. Palfi V K, Guillon T, Paulsen H,
Molnar G, Bousseksou A, CR Chim, 8(2005)1317-1325.
25. Alparone A, J Chem (2013).
26. Frisch M J , Trucks G W, Schlegel H B,
Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, V. Barone
V, Mennucci B, Petersson G A,
Nakatsuji H, Caricato M, Li X,
Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L,
Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima
T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A (Jr),
Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers
E, Kudin K N, Staroverov V N, Kobayashi R, Normand J,
Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J,
Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken
V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O,
Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma
K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich
S, Daniels A D, Farkas, J.B. Foresman, Ortiz J V, Cioslowski J, Fox
D J, Gaussian 09 Revision A.02.
27.
Becke A D, J Chem Phys, 98(1993)5648-5652.
28.
Lee C, Yang W, Parr R G, Phys Rev B, 37(1988)785-789.
29.
Hariharan P C, Pople J A, Theor Chim Acta,
28(1973)213-222.
30.
Audi G, Wapstra A H, Nucl Phys A, 565(1993)1-65.
31.
Audi G, Wapstra A H, Nucl Phys A, 595(1995)409-480.
32.
Vocke R D, Pure Appl Chem,
71(1999)1593-1607.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 179-187
Binary heavy metal bismuthate glass-ceramics with classical glass forming oxide
S Simon, M Muresan-Pop, C Leordean, M Baia, L Baia
Babes-Bolyai University, Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, 400084 Cluj-Napoca, Romania
___________________________________________________________________________________________________________________________________
As-prepared
and heat treated heavy metal binary system of bismuth oxide with
classical glass forming oxides were investigated with respect to
their ability to form vitreous structure in the composition range
of sillenite. For this high ratio of bismuth to classical glass
former cation Bi/M =12 (M = Si, Ge or B), the X-ray diffraction
analysis of as-prepared samples points out
δ-Bi2O3 nanocrystalline phase separation,
while FTIR and Raman spectroscopic analysis provide typical
features for the vitreous state, with no feature of crystalline
phase. After heat treatment Bi12MO20-δ
sillenite crystalline phases are identified in all samples, and the
structural changes induced by sillenites development are clearly
revealed in FTIR and Raman spectra. A new attempt for structural
units assignment based on analysis of vibrational spectra recorded
from heavy metal bismuthate glass-ceramic systems with classical
glass forming oxides is presented. © Anita Publications. All rights
reserved.
Total Refs : 22
1. Dumbaugh W H, Lapp J C, J Am Ceram Soc, 75(1992)2315-2326.
2. Maeder T, Int Mater Rev, 58(2013)3-40.
3. Stehle C, Vira C, Hogan D, Feller S, Affatigato M, Phys Chem Glasses, 39(1998)83-86.
4. George HB, Vira C, Stehle C, Meyer J, Evers S, Hogan D, Feller S, Affatigato M, Phys Chem Glasses, 40(1999) 326-332.
5. Baia L, Maniu D, Iliescu T, Simon S, Schlucker S, Kiefer W, Asian J Phys, 9(2000)51-57.
6. Baia L, Stefan R, Kiefer W, Popp J, Simon S, J Non-Cryst Solids, 303(2002)379-386.
7. Baia L, Stefan R, Popp J, Simon S, Kiefer W, J Non-Cryst Solids, 324(2003)109-117.
8. Baia L, Kiefer W, Simon S, Recent Res Devel Non-Cryst Solids, 4(2004)1-25.
9. Baia L, Kiefer W, Simon S, Rom Rep Phys, 56(2004)430-435.
10. Baia L, Kiefer W, Simon S, Phys Chem Glasses, 46(2005)279-283.
11. Radu A, Baia L, Kiefer W, Simon S, Vibr Spectrosc, 39(2005)137-140.
12. Simon S, Todea M, J Non-Cryst Solids, 352(2006)2947-2951.
13. Simon S, Udvar A D, J Am Ceram Soc, 93(2010)2760-2763.
14. Ponta O, Baia L, Baia M, Simon S, Z Phys Chem, 225(2011)647-660
15. Dapcevic A, Poleti D, Karanovic L, Rogan J, Drazic G, Solid State Sci, 25(2013)93-102. 172 S Simon, M Muresan-Pop, C Leordean, M Baia, and L Baia
16. Iordanova R, Dimitrov V, Dimitriev Y, Klissurski D, J Non-Cryst Solids, 180(1994)58-65
17. Iordanova R, Dimitriev Y, Dimitrov V, Kassabov S, Klissurski D, J Non-Cryst Solids, 204(1996)141-150.
18.
Dimitrov V, Dimitriev Y, Montenero A, J Non-Cryst Solids,
180(1994)51-57180(1994)51-57
19. Kharlamov A A, Almeda R M, Heo H, J Non-Cryst Solids, 202(1996)233-240.
20. Hazra S, Mandal S, Ghosh A, Phys Rev B, 56(1997)8021-8025.
21. He F, Wang J, Deng, D, Cheng J, J Chinese Ceram Soc, 37(2009)1791-1795.
22. Arenas D J, Middleton C, Kemper A F, Phys Rev B, 91(2015),Article No 144103. DOI: 10.1103/PhysRevB.91.144103
___________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 2 (2016) 189-198
Femtosecond time-resolved four-wave mixing spectroscopy of coupled electron-nuclear motion
Julian Alberta and Volker Engela
a Institute for Physical and Theoretical Chemistry, University Würzburg, Emil-Fischer-Str. 42, 97074, Würzburg, Germany.
e-mail: voen@phys-chemie.uni-wuerzburg.de
Dedicated to Professor Wolfgang Kiefer on the occasion of his 75th birthday.
___________________________________________________________________________________________________________________________________
We
present a theoretical study of time-resolved four-wave mixing (FWM)
spectroscopy on a model system describing coupled electron-nuclear
dynamics. Changing the parameterization of the Coulomb-interaction,
two situation can be created. In one case, the Born-Oppenheimer
adiabatic approximation holds. In adjusting the pulse sequence it
is then possible to separately monitor ground state and excited
state vibrational wave-packet dynamics. In the second case, strong
nonadiabatic coupling is present so that the separation of ground-
and excited state nuclear dynamics becomes difficult. To
investigate details of the dynamics and its relation to the
spectroscopy, we compare FWM-signals obtained from an exact
numerical calculation to those obtained within the adiabatic
approximation. © Anita Publications. All rights
reserved.
Keywords:
Femtosecond, Laser pulses, Emission, Born-Oppenheimer
approximation Time-resolved four-wave mixing (FWM)
spectroscopy
Total Refs : 33
1. Shen Y R, The Principles of Nonlinear
Opticals, (Wiley, New York), 1982.
2. Mukamel
S, Principles of Nonlinear Optical Spectroscopy, (Oxford University
Press, New York), 1995.
3.
Leonhardt R, Holzapfel W, Zinth W, Kaiser W, Chem Phys Lett,
133(1987)373-377.
4. Zinth W,
Leonhardt R, Holzapfel W, Kaiser W, IEEE J Quantum Electron,
24(1988)455-459.
5. Purucker
H.-G, Tunkin V, Laubereau A, J Raman Spectrosc,
24(1993)453-458.
6. Hayden C
C, Chandler D W, J Chem Phys, 103(1995)10465.
7. Motzkus
M, Pedersen S, Zewail A H, J Phys Chem,
100(1996)5620-5633..
8. Schmitt
M, Knopp G, Materny A, Kiefer W, Chem Phys Lett,
270(1997)9-15.
9. Schmitt
M, Knopp G, Materny A, Kiefer W, Chem Phys Lett, 280,
(1997)339-347.
10. Schmitt M, Knopp G,
Materny A, Kiefer W, J Phys Chem A,
102(1998)4059-4065.
11. Materny A,
Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer
W, Appl Phys B, 71(2000)299-317.
12. Grimberg B I,
Lozovoy V V, Dantus M, Mukamel S, J Phys Chem A,
106(2002)697-718.
13. Lang T, Frey
H.-M, Beaud P, Motzkus M, J Chem Phys, 115(2001)5418-5426;
doi.org/10.1063/1.1397325.
14. Meyer S,
Schmitt M, Materny A, Kiefer W, Engel V, Chem Phys Lett,
281(1997)332-336.
15. Meyer S,
Schmitt M, Materny A, Kiefer W, Engel V, Chem Phys Lett,
287(1998)753-754. (
16. Meyer S,
Schmitt M, Materny A, Kiefer W, Engel V, Chem Phys Lett,
301(1999)248-254.
17. M. Born and
K. Huang, Theory of Crystal Lattices, (Oxford University Press,
London), 1954.
18. Siebert T, Schmitt
M, Engel V, Materny A, Kiefer W, J Am Chem Soc,
124(2002)6242-6243.
19. Siebert T,
Maksimenka R, Materny A, Engel V, Kiefer W, Schmitt M, J Raman
Spectrosc, 33(2002)844-854 .
20. Shin S, Metiu
H, J Chem Phys, 102(1995)9285-9295;
doi.org/10.1063/1.468795.
21. Erdmann M,
Marquetand P, Engel V, J Chem Phys, 119(2003)672-679;
doi.org/10.1063/1.1578618
22. Erdmann M,
Gross E K U, Engel V, J Chem Phys, 121(2004)9666-9670.
23. Falge M,
Engel V, Gr¨afe S, J Chem Phys, 134(2011)184307/1 -
184307/8.
24. Falge M,
Engel V, Gr¨afe S, J Phys Chem Lett, 3(2012)2617-2620.
25. Abedi A,
Agostini F, Suzuki Y, Gross E K U, Phys Rev Lett,
110(2013)263001/1-263001/5;doi.org/10.1103/PhysRevLett.110.263001
26. Agostini F,
Abedi A, Suzuki Y, Gross E, Mol Phys,
111(2013)3625-3640.
27. Min S
K, Abedi A, Kim K, Gross E, Phys Rev Lett,
113(2014)263004/1-263004/5;doi.org/10.1103/PhysRevLett.113.263004
28. Agostini F,
Abedi A, Suzuki Y, Min S, Maitra N T, Gross E, J Chem Phys,
142(2015)084303; doi.org/10.1063/1.4908133.
29. Engel V,
Comput Phys Commun, 63(1991)228-242.
30. Renziehausen
K, Marquetand P, Engel V, J Phys B: At Mol Opt Phys,
42(2009)195402;
doi.org/10.1088/0953-4075/42/19/195402.
31. Feit M D,
Fleck J A, Steiger A, J Comput. Phys, 47(1982)412-433.
32. Domcke W,
Stock G, Adv Chem Phys, 100(1997)1-169.
33. Erdmann M,
Engel V, J Chem Phys, 120(2004)158-164;
doi.org/10.1063/1.1629275.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics
Vol. 25 No 2 (2016)
199-229
The accuracy of the M06L DFT method in the prediction of the vibrational Spectra of 4-amino-2-chlorobenzonitrile:A detailed interpretation of the Molecular Structure and vibrational IR and Raman spectra and other molecular properties using several DFT methods
M Alcolea Palafoxa, Rachna Rastogib*, Anupamac, M Jane Alamd, Daisy Bhatb, V K Rastogib,e
a Nofima AS - the Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway.
b Internet Lab, R D Group of Institutions, NH-58, Kadarabad (Modinagar), Ghaziabad, India.
c Department of Chemistry, SRM University, NCR Campus, Modinagar-201 204, India.
d Department of Physics, Aligarh Muslim University, Aligarh, India.
e Department of Physics, Aligarh Muslim University, Aligarh, India
___________________________________________________________________________________________________________________________________
The
accuracy of the M06L DFT method in the prediction of the
vibrational spectra of 4-amino-2-chlorobenzonitrile molecule was
tested and compared with that of the B3LYP method. Its experimental
FT-IR and FT- Raman spectra in the solid state were recorded at
room temperature, and the bands assigned with accuracy by
comparison with the results obtained by different methods,
including MP2 and DFT. The FT-IR spectrum in Nujol mull was also
recorded and analyzed. Several scaling procedures were used and
several recommendations were presented. The wavenumbers of most of
the modes were found in the expected range and the error obtained
was in general very low. The thermodynamic parameters were
calculated and discussed. The NBO analysis was done and Molecular
Electrostatic Potential (MEP) was plotted. The calculated HOMO and
LUMO energies showed that charge transfer occurs within the
molecule. Several general conclusions were deduced. © Anita
Publications. All rights reserved.
Keywords:
M06L DFT method; FT-IR and FT- Raman spectra; Molecular
Electrostatic Potential (MEP); HOMO and LUMO.
Total Refs : 97
1. Palafox M A, Recent Research
Developments in Physical Chemistry, India: Transworld Research
Network, 2 (1998) 213-232.
2. Palafox M A, Int J
Quantum Chem, 77(2000)661-684.
3. Palafox M A, V.K.
Rastogi, Spectrochim. Acta A 58 (2002) 411-440.
4. Palafox M A, V.K.
Rastogi, L. Mittal, Int. J. Quantum Chem. 94 (2003) 189-204.
5. Palafox M A, V.K.
Rastogi, L. Mittal, W. Kiefer, H.P. Mital, Int. J. Quantum Chem.
106 (2006) 1885-1901.
6. H. Imahori, M.E. El
Khouly, M. Fujitsuka, O. Ito, Y. Sakata, S. Fukuzumi, J. Phys.
Chem. B 101 (2001) 325.
7. J.A. Butera, M.M.
Antane, S.A. Antane, T.M. Argentieri, C. Freeden, R.F. Graceffa,
B.H. Hirth, D. Jenkins, J.R. Lennox, E. Matelan, N.W.
Norton,
D.
Qluagliato, J.H. Sheldon, W. Spinelli, D. Warga, A. Wojdan, M.
Woods, J. Med. Chem. 43 (2000) 1187 & 1203.
8. K. Kagara, S. Goto,
M. Ichihara, J. Synt. Org. Chem. Jpn. 57 (1999) 415.
9. A.A. Fadda, M.
El-Sayed Afash, R.S. Awad, Eur. J. Med. Chem. 60 (2013)
421-430.
10. S. Zhang, Y. Zhang, X. Ma,l. Lu,
Y. He, Y.J. Deng, J. Phys. Chem. B 117 (2013) 2764-2772.
11. W. Tan, D. Zheng, H. Wu, D. Zhu,
Tetrahedron Lett, 49 (2008) 1361-1364.
12. L. Peng, L. Zhang, X. Cheng,
L.S. Feng, H.Q. Hao, Plant Biol. 15 (2013) 404-414.
13. A.B. Veselá, H. Pelantová, M.
Sŭlc, M. Macková, P. Lovecká, M. Thimová, F. Pasquarelli, M.
Pičmanová, M. Pátek, T.C. Bhalla, L. Martínkova,
J.
Ind. Microb. Biotechnol. 39 (2012) 1811-1819.
14. H Koopman, J Daams, Weed
Research, 5 (1965) 319-326.
15. E. Björklund, B. Styrishave,
G.G. Anskjær, M. Hansen, B.H. Sørensen, Sci. Total. Environ. 409
(19) (2011) 3732–3739.
16. P. Agarwal, S. Bee, A. Gupta, P.
Tandon, V.K. Rastogi, S. Mishra, P. Rawat, Spectrochim Acta A 121
(2014) 464–482.
17. Palafox M A, Rastogi V K, Vats J
K, J Raman Spectrosc, 37(2006)85-99.
18. D. Vujovic, H.G. Raubenheimer,
L.R. Nassimbeni, Eur. J. Inorg. Chem.14 (2004) 2943.
19. P. Kolek, K. Pirowska, J.
Najbar, Phys. Chem. Chem. Phys.3 (2001) 4874.
20. P. Kolek, K. Pirowska, L.
Chacaga, J. Najbar, Phys. Chem. Chem. Phys.5 (2003) 4096.
21. P. Kolek, K. Pirowska, M. Gora,
B. Kozik, J. Najbar, Chem. Phys. 285 (2002) 55.
22. V.K. Rastogi, D.K. Jain, Y.C.
Sharma, Asian J. Chem. 3 (1991) 113.
23. V.K. Rastogi, M. Alcolea
Palafox, B. Lal, V. Jain, Ind. J. Pure Appl. Phys. 38 (2000)
564-569.
24. N.P. Singh, R.A. Yadav, Ind. J.
Phys. B 75 (2001) 347.
25. V.K. Rastogi, M. Alcolea
Palafox, S. Singhal, S.P. Ojha, W. Kiefer, Int. J. Quantum Chem.
107 (2007) 1099-1114.
26. V.K. Rastogi, S. Singhal, A.P.
Kumar, G.R. Rao, M. Alcolea Palafox, Ind. J. Pure Appl. Phys. 47
(2009) 844-851.
27. M. Alcolea Palafox, V.K.
Rastogi, In Perspectivesin Modern Optics & Optical
Instrumentation, J. Joseph. A. Sharma A, V.K. Rastogi,
Eds;
Anita
Publications, Delhi, Ghaziabad, India, 2002, 91-98.
28. S. Sudha, N. Sundaraganesan, M.
Kurt, M. Cinar, M. Karabacak, J. Molec. Struct. 985(2011)
148-156.
29. Nataraj A, Balachandran V,
Karthick T, J Molec Struct, 1038(2013)134-144.
30. S. Jeyavijayan, M. Arivazhagan,
Spectrochim. Acta A 81 (1) (2011) 466-474.
31. V.K. Rastogi, C.B. Arora, S.K.
Singhal, D.N. Singh, R.A. Yadav, Spectrochim. Acta A 53 (14) (1997)
2505-2510.
32. V.K. Rastogi, V. Jain, M.
Alcolea Palafox, D.N. Singh, R.A. Yadav, Spectrochim. Acta A 57
(2001) 209-216.
33. V.K. Rastogi, M. Alcolea
Palafox, R. Tomar, U. Singh, Spectrochim. Acta A 110 (2013)
458-470.
34. V.K. Rastogi, M. Alcolea
Palafox, R.P. Tanwar, L. Mittal, Spectrochim. Acta A 58 (2002)
1987-2004.
35. N. Sundaraganesan, C.
Meganathan, B.D. Joshua, P. Mani, A. Jayaprakash, Spectrochim. Acta
A 71 (3) (2008) 1134-1139.
36. V. Krishnakumar and S
Dheivamalar, Spectrochimica Acta Part A, 71 (2008) 465-470.
37. Y. Goyal, M. Jane Alam, D. Bhat,
S. Ahmad, M. Alcolea Palafox, V.K. Rastogi, Fifth International
Conference on Perspectives in vibrational spectroscopy
(ICOPVS-2014), Kerala (INDIA) (2014).
38. Rasheed Tabish, Ahmad Shabbir,
Spectrochim Acta, A 77(2010)446-456.
39. J.M. Seminario, P. Politzer
(Eds), Modern density functional theory: a tool for chemistry, Vol
2, 1995, Elsevier, Amsterdam.
40. M. Alcolea Palafox, G. Tardajos,
J.J. Kim, O.F. Nielsen, R. Lodhi, V.K. Rastogi, Asian J Phys, 15
(2006) 281-285.
41. A.G. Ponomareva, Y.P. Yurenko,
R.O. Zhurakivsky, T. van Mourik, D.M. Hovorun, Phys. Chem. Chem.
Phys. 14 (2012) 6787.
42. O.V. Shishkin, A. Pelmenschikov,
D.M. Hovorun, J. Leszczynski, J. Molec. Struct. 526 (1-3) (2000)
329-341.
43. O.V. Shishkin, L. Gorg, O.A.
Zhikol, J. Leszczynski, J. Biomol. Struct. Dyn.21 (4) (2004)
537.
44. O.V. Shishkin, L. Gorg, O.A.
Zhikol, J. Leszczynski, J. Biomol. Struct. Dyn.22 (2004) 227.
45. G.V. Palamarchuk, O.V. Shishkin,
L. Gorb, J. Leszczynski, J. Biomol. Struct. Dyn.26 (5) (2009)
653.
46. O.O. Brovarets’, D.M. Hovorun,
J. Biomol. Struct. Dyn. 32 (2014) 127.
47. M. Alcolea Palafox, J. Biomol.
Struct. Dyn. 32 (5) (2014) 831-851.
48. (a) M. Alcolea Palafox, P.
Posada-Moreno, A.L. Villarino-Marín, C. Martinez-Rincon, I.
Ortuño-Soriano, I. Zaragoza-García, J. Comput.
Aided
Molec. Design 25 (2011) 145-161. (b) M.C. Alvarez-Ros, M.
Alcolea Palafox, Pharmaceuticals,7 (2014) 695-722.
49. M. Hoffmann, J. Rychlewski, Rev.
Mod. Quant. Chem, 2 (2002) 1767.
50. V. Arjunan, A. Raj, R. Anitha,
S. Mohan, Spectrochim. Acta A 125 (2014) 160-174.
51. V. Arjunan, S.T. Govindaraja,
S.P. Jose, S. Mohan, Spectrochim. Acta A 128 (2014) 22-36.
52. V. Arjunan, L. Devi, R.
Subbalakshmi, T. Rani, S. Mohan, Spectrochim. Acta A 130 (2014)
164-177.
53. N. Sundaraganesan G. Mariappan
S. Manoharan, Spectrochim. Acta A 87 (2012) 67-76.
54. M. Szafran, K. Ostrowska, A.
Katrusiak, Z. Dega-Szafran, Spectrochim. Acta A 128 (2014)
844-851.
55. D. Kattan, M. Alcolea Palafox,
S. Kumar, D. Manimaran, H. Joe, V.K. Rastogi, Spectrochim. Acta A
123 (2014) 89-97.
56. M. Alcolea Palafox, D. Bhat, Y.
Goyal, S. Ahmad, I. Hubert Joe, V.K. Rastogi, Spectrochim. Acta
A136 (2015) 464-472
57. M. Alcolea Palafox, V.B. Jothy,
S. Singhal, I. Hubert Joe, S. Kumar, V.K. Rastogi, Spectrochim.
Acta A 116 (2013) 509-517.
58. Y. Zhao, D.G. Truhlar, J. Chem.
Phys. 125 (2006) 194101.
59. Gaussian 09, Revision D.01, M.J.
Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H.
Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J.
Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant,
S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene,
J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,
G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels,
Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox,
Gaussian, Inc., Wallingford CT, 2009.
60. Y. Zhao, D.G. Truhlar,
Chem. Phys. Lett. 502 (2011) 1.
61. Y. Sert, B. Miroslaw, Ç.
Çırak, H. Doğan, D. Szulczyk, M. Struga, Spectrochim. Acta A 128
(2014) 91-99.
62. J.E. Carpenter, F.
Weinhold, J. Molec. Struct. (Theochem) 169 (1988)
41-62.
63. A.E. Reed, L.A Curtiss, F.
Weinhold, Chem. Rev. 88 (1988) 899.
64. P. L. Polavarapu, J. Phys.
Chem., 94 (1990) 8106.
65. G. Kerestztury, S. Holy.
J. Varga, G. Bensenya, A. Y. Wng, J. R. Durig, Spectrochim Acta,
A49 (1993) 2007-2026.
66. G. Kerestztury, Raman
spectroscopy theory, in J.M. Chalmers. P.R. Griffths (Eds).
Handbook of Vibrational Spectroscopy, vol 1, Wiley 2002, pp
71-87.
67. J. Casado, L. Nygaard,
G.O. Sørensen, J. Molec. Struct. 8 (1-2) (1971)
211-224.
68. A.M. Islor, B.
Chandrakantha, T. Gerber, E. Hosten, R. Betz, Z. Kristallogr. NCS
228 (2) (2013) 217-218.
69. S. Merlino, F. Sartori,
Acta Crystallogr. B38 (1982) 1476-1480.
70. A. Heine, R. Herbst-Irmer,
D. Stalke, Acta Crystallogr. B50 (1994) 363-373.
71. M. Alcolea Palafox, J.L.
Núñez, M. Gil, J. Molec. Struct. (Theochem)593 (2002) 101.
72. M. Alcolea Palafox, M.
Gil, J.L. Núñez, V.K. Rastogi, L. Mittal, R. Sharma, Inter. J.
Quantum Chem.103 (4) (2005) 394-421.
73. M. Alcolea Palafox, V.K.
Rastogi, Spectrochim. Acta A 58 (2002) 411-440.
74. M. Alcolea Palafox, J.L.
Núñez, M. Gil, V.K. Rastogi, Perspectives in Engineering Optics, K.
Singh, V.K. Rastogi, Eds, Anita Publications,
Delhi-Ghaziabad,
356-391 (2002).
75. G. Varsanyi, Assignments
for vibrational Spectra of Seven hundred benzene derivatives, Vol
1, Adam Hilger, London, 1974, pp. 280.
76. (a) E.F. Mooney,
Spectrochim Acta, 20 (1964) 1021. (b) E.F. Mooney,
Spectrochim Acta, 19 (1963) 877.
77. Y. Sert, Ç. Çırak, F.
Ucun, Spectrochim. Acta A 107 (2013) 248-255.
78. B. Lakshmaiah, G.R. Rao,
J. Raman Spectrosc. 20 (1989) 439.
79. V. Kumar, Y. Panikar, M.
Alcolea Palafox, J.K. Vats, I. Kostova, K. Lang, V.K. Rastogi,
Indian J. Pure & Appl. Phys, 48 (2010) 85-94.
80. J.A. Faniran, I. Iweibo,
R.A. Oderinde, J. Raman Spectrosc. 11 (1998) 6.
81. N.P. Roeges, A Guide to
the complete interpretation of infrared spectra of organic
structures, Wiley, New York, 1994;
82. J. Coates, Encyclopedia of
Analytical Chemistry, in. R.A. Meyers (ed) Interpretation of
Infrared Spectrum: A Practical Approach,
(John
Wiley, Chichester) 2000.
83. S. Ram, J. S. Yadav, D. K.
Ra, Ind. J. Phy., 59B (1985) 19.
84. M. Alcolea Palafox. Asian
J. Phys. 2 (1993) 72.
85. M. Alcolea Palafox, Ind.
J. Pure Appl. Phys.30 (1992) 59.
86. M. Alcolea Palafox, J.
Molec. Struct.175 (1988) 81-84.
87. N.W. Larsen, E.L. Hansen,
F.M. Nicolaisen. Chem. Phys. Lett. 43 (1976) 584.
88. D. Lin-Vien, N.B Colthup,
W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and
RamanCharecteristic frequencies of Organic
Molecules,
(Academic Press Inc, San Diego, California), 1991.
89. F.R. Dollish, W.G. Fateley, F.F. Bentley,
Characteristic Raman Frequencies of Organic Compounds, Wiley, New
York, 1974.
90. M. Arivazhagan, R. Meenakshi, S. Prabhakaran,
Spectrochim. Acta A 102 (2013) 59-65.
91. V. Arjunan, K. Carthigayan, S. Periandy, K.
Balamurugan, S. Mohan, Spectrochim. Acta A 98 (2012)
156-169.
92. S. Dheivamalar, V. Silambarasan, Spectrochim.
Acta A 96 (2012) 480-484.
93. M. Arivazhagan, J. S. Kumar, Ind. J Pure
Appl. Phys. 50 (2012) 363-373.
94. Sapse A M, Molecular Orbital Calculations for
Biological Systems, (Oxford University Press, New York),
1998.
95. M.J. Alam, S. Ahmad, Spectrochim. Acta A 128
(2014) 653-664 and ref. cited therein.
96. Alam M J, Ahmad S, J Molec Struct,
1059(2014)239-254.
97.
http://www.sigmaaldrich.com/materials-science/organic-electronics/photonic-optical-materials/tutorial/nlo-materials.html
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar